CHANCERY DIVISION
PATENTS COURT
Strand, London, WC2A 2LL |
||
B e f o r e :
____________________
CELLTECH R & D LIMITED |
Claimant |
|
- and - |
|
|
MEDIMMUNE INC. |
Defendant |
____________________
Mr Anthony Watson QC and Mr Richard Meade (instructed by Marks & Clerk Solicitors for the Defendant)
____________________
Crown Copyright ©
Mr Justice Laddie:
Introduction:
Technical Background
Figure 1:
The Patent
"Such humanised chimeric antibodies, however, still contain a significant proportion of nonhuman amino acid sequence, i.e. the complete non-human variable domains, and thus may still elicit some HAMA response, particularly if administered over a prolonged period [Begent et al (4)]." (paragraph 0009)
"In Riechmann et al/Medical Research Council it was found that transfer of the CDR regions alone [as defined by Kabat (7) and (8)] was not sufficient to provide satisfactory antigen binding activity in the CDR-grafted product. Riechmann et al found that it was necessary to convert a serine residue at position 27 of the human sequence to the corresponding rat phenylalanine residue to obtain a CDR-grafted product having improved antigen binding activity. This residue at position 27 of the heavy chain is within the structural loop adjacent to CDR1. A further construct which additionally contained a human serine to rat threonine change at position 30 of the heavy chain did not have a significantly altered binding activity over the humanised antibody with the serine to phenylalanine change at position 27 alone."
"These results indicate that changes to residues of the human sequence outside the CDR regions, in particular in the structural loop adjacent to CDR1, may be necessary to obtain effective antigen binding activity for CDR-grafted antibodies which recognise more complex antigens. Even so, the binding affinity of the best CDR-grafted antibodies obtained was still significantly less than that of the original MAb (i.e. Murine Antibody)"
"Very recently Queen et al (9) have described the preparation of a humanised antibody that binds to the interleukin 2 receptor, by combining the CDRs of a murine MAb (anti-Tac) with human immunoglobulin framework and constant regions. The human framework regions were chosen to maximise homology with the anti-Tac MAb sequence. In addition computer modelling was used to identify framework amino acid residues which were likely to interact with the CDRs or antigen, and mouse amino acids were used at these positions in the humanised antibody.
"In WO 90/07861 Queen et al propose four criteria for designing humanised immunoglobulins. The first criterion is to use as the human acceptor the framework from a particular human immunoglobulin that is unusually homologous to the non-human donor immunoglobulin to be humanised, or to use a consensus framework from many human antibodies. The second criterion is to use the donor amino acid rather than the acceptor if the human acceptor residue is unusual and the donor residue is typical for human sequences at a specific residue of the framework. The third criterion is to use the donor framework amino acid residue rather than the acceptor at positions immediately adjacent to the CDRs. The fourth criterion is to use the donor amino acid residue at framework positions at which the amino acid is predicted to have a side chain atom within about 3 A of the CDRs in a three-dimensional immunoglobulin model and to be capable of interacting with the antigen or with the CDRs of the humanised immunoglobulin. It is proposed that criterion two, three or four may be applied in addition or alternatively to criterion one, and may be applied singly or in any combination."
"In the resultant humanised antibody the donor CDRs were as defined by Kabat et al (7 and 8) and in addition mouse donor residues were used in place of the human acceptor residues at positions 27, 30, 48, 66, 67, 89, 91, 94, 103, 104, 105 and 107 in the heavy chain and at positions 48, 60 and 63 in the light chain of the variable region frameworks. The humanised anti-Tac antibody obtained is reported to have an affinity for p55 of 3 x 109 M-1, about one-third of that of the murine MAb."
"We have further investigated the preparation of CDR-grafted humanised antibody molecules and have identified a hierarchy of positions within the framework of the variable regions (i.e. outside both the Kabat CDRs and the structural loops of the variable regions) at which the amino acid identities of the residues are important for obtaining CDR-grafted products with satisfactory binding affinity. This has enabled us to establish a protocol for obtaining satisfactory CDR-grafted products which may be applied very widely irrespective of the level of homology between the donor immunoglobulin and acceptor framework. The set of residues which we have identified as being of critical importance does not coincide with the residues identified by Queen et al (9)."
The Patent Protocol
"The positions at which donor residues are to be substituted for acceptor in the framework are then chosen as follows, first of all with respect to the heavy chain and subsequently with respect to the light chain.2. Heavy Chain
2.1 Choose donor residues at all of positions 23, 24, 49, 71, 73 and 78 of the heavy chain or all of positions 23, 24 and 49 (71, 73 and 78 are always either all donor or all acceptor).
2.2 Check that the following have the same amino acid in donor and acceptor sequences, and if not preferably choose the donor: 2, 4, 6, 25, 36, 37, 39, 47, 48, 93, 94, 103, 104, 106 and 107.
2.3 To further optimise affinity consider choosing donor residues at one, some or any of:
i.. 1,3ii. 72, 76
iii. If 48 is different between donor and acceptor sequences, consider 69
iv. If at 48 the donor residue is chosen, consider 38 and 46
v. If at 69 the donor residue is chosen, consider 80 and then 20
vi. 67
vii. If at 67 the donor residue is chosen, consider 82 and then 18
viii. 91
ix. 88
x. 9, 11, 41, 87, 108, 110, 112"
"Key residues are 23, 71 and 73. Other residues which may contribute to a lesser extent are 1, 3 and 76. Finally 25 is usually conserved but the murine residue should be used if there is a difference."
"Heavy Chain - Key residues are 24, 49 and 78. Other key residues would be 36 if not a tryptophan, 94 if not an arginine, 104 and 106 if not glycines and 107 if not a threonine. Residues which may make a further contribution to stable packing of the heavy chain and hence improved affinity are 2, 4, 6, 38, 46, 67 and 69. 67 packs against the CDR residue 63 and this pair could be either both mouse or both human. Finally, residues which contribute to packing in this region but from a longer range are 18, 20, 80, 82 and 86. 82 packs against 67 and in turn 18 packs against 82. 80 packs against 69 and in turn 20 packs against 80. 86 forms an H bond network with 38 and 46. Many of the mouse-human differences appear minor e. g. Leu-Ile, but could have an minor impact on correct packing which could translate into altered positioning of the CDRs."
"In the design of the fully humanised antibody the aim was to transfer the minimum number of mouse amino acids that would confer antigen binding onto a human antibody framework."
39. The patent gives some details of experimental work carried out in relation to H23. In an initial set of experiments discussed on pages 17 and 18, the inventors show that CDR-grafted light chain gL221A, in association with CDR-grafted heavy chain gH341A (also referred to as JA185) bound well to antigen (page 18, lines 40-41). However, as discussed in their interim conclusions (page 18, lines 43-55), the same light chain, in association with gH341B (also referred to as JA183) which lacked donor residues at H6, H23 and H24, generated 'only weak binding activity'. From this, they concluded that H6, H23 and H24 were important to maintain good binding. However, from these experiments, no conclusion can be drawn as to the individual importance of these three residues."
"INTERIM CONCLUSIONSIt has been demonstrated, therefore, for OKT3 that to transfer antigen binding ability to the humanised antibody, mouse residues outside the CDR regions defined by the Kabat hypervariability or structural loop choices are required for both the light and heavy chains. Fewer extra residues are needed for the light chain, possibly due to the higher initial homology between the mouse and human kappa variable regions. Of the changes seven (1 and 3 from the light chain and 6, 23, 71, 73 and 76 from the heavy chain) are predicted from a knowledge of other antibody structures to be either partly exposed or on the antibody surface. It has been shown here that residues 1 and 3 in the light chain are not absolutely required to be the mouse sequence; and for the heavy chain the gH341B heavy chain in combination with the 221A light chain generated only weak binding activity. Therefore the presence of the 6, 23 and 24 changes are important to maintain a binding affinity similar to that of the murine antibody. It was important, therefore, to further study the individual contribution of the other 8 mouse residues of the kgH341A gene compared to kgH341."
"These and other results lead us to the conclusion that of the 11 mouse framework residues used in the gH341A (JA185) construct, it is important to retain mouse residues at all of positions 6, 23, 24, 48 and 49, and possibly for maximum binding affinity at 71, 73 and 78."
The Claims:
"An antibody molecule having affinity for a predetermined antigen and comprising: a CDR-grafted heavy chain wherein, according to the Kabat numbering system, residues 31 to 35, 50 to 65 and 95 to 102 are donor residues; and a complementary light chain, said CDR-grafted heavy chain having a variable domain comprising predominantly acceptor antibody heavy chain framework residues and donor antibody heavy chain antigen-binding residues, said donor antibody having affinity for said predetermined antigen, wherein, according to the Kabat numbering system, in said CDR-grafted heavy chain, amino acid residues 23, 24, 26 to 30 and 49 at least are additionally donor residues, provided that …" (emphasis added)
"The antibody molecule of claim 1, wherein amino acid residues 71, 73 and 78 in said CDR-grafted heavy chain are additionally donor residues."
The defendant's product
German patent law
"In contrast to the legal situation until 1978, the claims are not now merely the starting point but rather the essential basis for determining the extent of protection. Under Sect. 14, 2nd sentence of the Patent Law 1981, the terms of the claim have to be determined by interpretation, taking the description and drawings into consideration. As the Protocol on the Interpretation of Art. 69 (1) EPC (corresponding to sect. 14 of the Patent Law 1981) shows, the interpretation does not only serve the purpose of resolving an ambiguity found in the claims but also of clarifying the technical terms used in the claims as well as the limits and bounds of the invention described therein. . .The extent of protection of a patent filed after January 1, 1978, is determined as regards the equivalent use of the invention, by the terms of the claims to be ascertained by interpretation. What must be considered is the scope of the invention as it may be recognized by a person skilled in the art. It has to be examined whether a person skilled in the art, based on the invention as claimed, is able to solve the problem solved by the invention as claimed with equivalent means, i.e. to achieve the desired result with different means also leading to that result. Means which the average person skilled in the art, due to his knowledge and skill and based on considerations oriented on the invention as claimed, can identify as being equivalent are generally covered by the extent of the protection conferred by the patent. This is required by the goal of fair remuneration for the inventor under consideration of the aspect of legal certainty."
"b) The principles for determining the extent of protection are also to be applied if the patent claim contains specifications of figures or dimensions. Such details participate in the binding nature of the patent claim as the decisive basis for determining the extent of protection. The inclusion of figures or dimensions in the claim shows that they are intended to contribute to determining and hence to delimiting the subject matter of the patent. Consequently, such details must not be regarded as less binding, merely exemplary determinations of the protected technical teaching, as was considered possible in the case law of the legal situation in Germany before entry into effect of Art. 69 of the EPC and the corresponding amendments of national legislation.c) Like any element of the patent claim, specifications of figures and dimensions are as a matter of principle subject to interpretation. As in other aspects, the decisive factor is the way in which the person skilled in the art understands such details in the overall context of the patent claim, with the description and drawings again being used to illuminate this context. Account must be taken of the fact that specifications of figures and dimensions, by virtue of their objective content, which will also dominate the interpretation by the person skilled in the art, are not uniform but may in different forms refer to factual constellations with very different contents."
"d) These factors alone prevent the person skilled in the art always ascribing the same fixed meaning to specifications of figures, dimensions or ranges. However, as a rule, he will attach a higher degree of certainty and clarity to such details than to verbal descriptions of the elements of the teaching according to the invention [citation omitted]. Figures as such are unambiguous, while general concepts formulated in linguistic terms constitute a certain degree of abstraction from the object to which they refer. In addition, such concepts, if used in a patent specification, need not necessarily be used in the meaning attached to them by general technical linguistic usage; in this sense the patent specification can constitute its "own lexicon" (c.f. [30 IIC 932 (1999)] - Spannschraube). From the vantage point of the reader skilled in the art, the features given concrete form by means of the specification of figures and dimensions may be interpreted such that the objective success to be achieved according to the invention is determined more precisely and, where appropriate, more narrowly than would be the case for a purely verbal description. Since it is the applicant's responsibility to ensure that everything is contained in the patent claim for which he requests protection, the reader of the patent specification is entitled to assume that this requirement has also been satisfied through the inclusion of figures in the wording of the patent claims. This applies all the more in that the applicant who specifies figures has particular occasion to be fully aware of the consequences of the wording of the claims for the limits of the patent protection requested.For this reason, a considerably stricter assessment is appropriate than was the practice under the law in Germany before 1978 [citation omitted]. As a matter of principle, an unambiguous figure determines and delimits the protected object exhaustively in this respect; figures above or below are therefore as a rule no longer to be included within the subject matter of the patent claim."
"… the decisive factor is the semantic content of the patent claim to be determined with the assistance of the description and drawings. In another context, [a specified angle, e.g. 90o] may therefore be regarded by the person skilled in the art as a magnitude to be complied with exactly. This also applies as a matter of principle to ranges of figures with limit values [citation omitted]. An interpretation that a value must be complied with exactly will above all correspond to the interpretation of the person skilled in the art following the realization that this is a "critical" value. Accordingly, the way in which a specific figure or dimension in the patent claim is to be understood is a question of the interpretation by the person skilled in the art in the individual case, which is a matter to be determined by the trial judge."
"Accordingly, for an embodiment departing from the literal wording of the patent claim to be within the extent of protection, it is not sufficient that (1.) it solves the problem underlying the invention with modified but objectively equivalent means and (2.) specialist knowledge enables the person skilled in the art to recognize the modified means as being equivalent. In the same way that the same effect cannot be determined without focusing on the patent claim, in addition (3.) the considerations that the person skilled in the art must apply must focus on the semantic content of the technical teaching protected in the patent claim in such a way that the person skilled in the art would consider the different embodiment with its modified means as being the specific equivalent solution."
"As with other elements of the patent claim, the effect according to the claim must not be determined without taking account of the figures and dimensions contained in the claim. Consequently, as a matter of principle it is not sufficient for the inclusion of different embodiments within the extent of protection that in the interpretation of the person skilled in the art the effect of the invention otherwise occurs independently of compliance with the figures. If no other figure than the value according to the claim appears to be equivalent to the person skilled in the art, the extent of protection does not go beyond the semantic content of the patent claim. In the interpretation of the person skilled in the art the effect of the feature determined by figures according to the claim is in such event determined by (exact) compliance with a figure and can therefore necessarily not be obtained by a different figure. In such a case, it is not sufficient for the person skilled in the art to realize that a teaching abstracted from the figures is technically reasonable.The applicant will not always recognize and exhaust the entire technical contents of the invention; irrespective of the question whether this is legally possible, he is not obliged by law to do so. If, when observed objectively, the patent is restricted to a narrower wording of the claim than would be appropriate according to the technical content of the invention, and thus compared with the state of the art, the specialist in the field is entitled to rely on the fact that protection is correspondingly restricted. The patent holder is then prevented from subsequently claiming protection for something he has not placed under protection. The same applies even if the person skilled in the art realizes that the effect of the invention as such (in the narrower case discussed above) could be achieved beyond the range protected in the patent claim."
"This Court has repeatedly held that an embodiment cannot fall within the extent of protection of the patent if it fails to make use of a feature of the claim that is essential and decisive for the teaching protected. Accordingly, this is in any event the case if this assessment is the result of essential differences in the effect. However, the case law of this Court has hitherto not included in this assessment cases in which the person skilled in the art's expectation is based not on the technical contents of the feature ("essential and decisive") but instead on the wording of the patent specification as such, i.e., such cases in which the wording in the patent specifications - irrespective of the recognizable technical significance of the feature - communicates to the specialist that the decisive factor for the implementation of the teaching protected by the patent is that the feature is used according to its literal meaning or at least not in the entire range of (assumed) objectively equivalent solutions.The aforementioned responsibility of the patent holder to ensure that what he requires protection for is set out in the features of the patent claim therefore restricts the protection to what is to be related to the semantic content of its patent claims even in such cases in which the holder - for whatever reasons - has missed this opportunity and the patent, if considered objectively, remains less than a more extensive technical content of the invention."
"Ultimately in agreement with the aforesaid, the courts in the United Kingdom, in order to determine an infringement, examine whether the specialist public is entitled to expect and proceed on the basis that according to the patent the decisive factor will be precise compliance with the wording of the patent claim (cf the so called Catnic question: for harmonized law see inter alia Patents Court 1989 F.S.R. 181…..- Improver Corporation v Remington Consumer Products Ltd (Epilady case); Court of Appeal, 1995 R.P.C. 585…-Kastner v Rizla). Related to an individual feature of the patent claim, the issue is whether the feature in question appears to the person skilled in the art as one that can be used exclusively in accordance with the meaning of the words, if the claimed teaching on the technical action to be complied with (cf Court of Appeal ….- Kastner v Rizla Ltd). Such an interpretation is possible particularly in the case of figures and measurements (cf Patents Court ….- Auchinloss v Agricultural and Veterinary Supplies Ltd)".
Does SYNAGIS fall within the Patent?
"Q. Help my Lord with this. The Adair team [i.e. the patentee], we know, looked at crystal structures.A. Yes.
Q. We know that they looked at KOL.
A. Yes.
Q. Why did they say that 23 was key and, in the first tier in the hierarchy, if they had looked at a picture like illustration 3, they would have seen unambiguously that it was a low priority.
A. I cannot answer that. I do not know why they made the choices that they did, other than the binding data certainly shows you that if you make a serine to lycine change, a non-conservative substitution, then you have a difference."
"MR. WATSON: You are saying that Adair made a wrong analysis on the basis of the crystal structures?A. I think that that is possible, yes. I think maybe H23 slipped in somehow. They found experimentally that it made a difference when serine lycine change was made, and then grouped it in as surface near the CDRs. It is certainly on the surface. Whether you call it near is a somewhat debatable point. You could argue that it was near if you measure from backbone rather than side chain. My view is that the description of it as being near is somewhat misleading.
Q. So you are the skilled man who goes off and carries out the same work as Adair. He looks at crystal structures.
A. I think this is rather simpler than what was done by Adair. I think they did quite detailed comparative analysis, looking at different structures, checking that the interactions were similar in all of them, rather than just getting a general view of where this is, which is all that I am suggesting as a skilled man one would need to do.
Q. So you eyeball it, conscious that Adair has done much more sophisticated modelling, and you say, "I am going to ignore Adair." Is that what you are saying?
A. Adair has not done sophisticated modelling; he has done analysis of some of the structures. It is the same sort of thing. It is not doing modelling, which was done by Queen. It is just looking at the structures.
Q. Ultimately you are saying that Adair got it wrong and the skilled man would spot that.
A. I think that is a possibility, but he did not get it wrong in that we know that the change at H23 does make a difference. I think that throwing it in with surface residues near to the CDRs is maybe misleading rather than wrong. If it was misleading, it depends what one calls near."
(i) The patent sets out a protocol which is applicable to a given situation of humanising a mouse monoclonal.(ii) The skilled person would pick an acceptor sequence of close homology if he could. Assume a variant in which he had ensured that there were donor residues at all the positions called for by the claims except at position 23.
(iii) He or she sees at position 23 the acceptor (threonine) and the donor (serine).
(iv) He or she knows from the common general knowledge that serine and threonine are conservative substitutions. They are of similar size, not charged, nearly the same hydrophilicity/hydrophobicity, and the same polarity (they can make the same H-bond through the presence of the same OH group). The only difference between them is the presence of an extra methyl group in threonine.
(v) He knows from the Patent that it is undesirable to make a change, unless necessary because of the potential HAMA response.
(vi) He knows from the Patent and from visualisation (i.e. by using a computer to generate a virtual model of the antibody molecule) that H23 is a surface residue outside the Kabat and Chothia CDRs. No special warning has been given as to the sensitivity of that position to change.
(vii) He knows from the Patent and the common general knowledge that a serine-threonine change at position 30 in the Chothia loop in Riechmann made no difference.
"Q. Then when we look at the experimental data, we see that they have shown that changing 23 from human to mouse does improve affinity.A. Yes.
Q. What they said is from structural analysis they predicted 23 is a key residue and by experiment they have shown that it is.
A. Yes.
Q. You would agree that the patent contains a considerable volume of work?
A. Indeed, yes.
Q. Many man years.
A. Probably, yes. 1989, yes.
Q. There are a lot of constructs they have made.
A. Yes.
Q. Just making one construct is not trivial, is it?
A. Certainly not in 1989.
Q. Leaving aside problems of whether you had a right to work somebody's patent, this is a very nice body of research to be able to carry forward your learning.
A. Yes." (Transcript Day 3 p 161