

Volume 4, Issue 2, June 2007

Patenting programs as machines
+

Philip Leith*

Abstract

It is clear that software is being protected in Europe. Not only is software being

protected, but business methods are routinely receiving patent protection. Protection

is being given when the applicant succeeds in recasting the software invention as

hardware device or hardware device control. Thus, for example, in the recent Aerotel

appeal judgment in the UK, a business method described in hardware terms was

viewed as protectable but another business method (Macrossan) couched in software

terms was not.

The argument I wish to put forward is that the current approach – which was

originally set out in Vicom – has used a model of invention in computing which does

not reflect how the software community views invention. Programs have been

protected in the guise of ‘devices’ or ‘machines’ rather than as programs. This causes

a mismatch between what should be protectable and what is protected and, to an

extent, explains much of the opposition to software patents in Europe.

If software was to be examined and protected as software, would the opposition be

resolved? Perhaps, but to get that position there remain specific problems to be

overcome which concern the nature and examination of software: this requires a

+
 This article précis’s a forthcoming (2007) text, Software and Patents in Europe, Cambridge

University Press.

*
 Queen’s University of Belfast.

(2007) 4:2 SCRIPT-ed

215

radical approach to cope with a radical technology before opponents might agree

that the patent system serves the software marketplace.

DOI: 10.2966/scrip.040207.214

© Philip Leith 2007. This work is licensed through SCRIPT-ed Open Licence (SOL).

(2007) 4:2 SCRIPT-ed

216

1. Nymeyer & Vicom

Prior to the inception of the European Patent Convention the patenting of software

and also to what are now called business method patents was valid in the UK. Patent

law prior to the EPC made no specific reference to software and thus applications

were dealt with as general technology and had to meet the requirements of the 1949

Patent Act as to patentability – that is, that the invention related to a “manner of new

manufacture”.
1
 This broad-reaching definition could clearly include software within

its remit and indeed, we find that in the 1970s there were attempts to move from the

solely hardware-oriented patent application to that of application-oriented patent,

where the novelty lay in the software being run on non-novel hardware.

As a useful example of this move we can consider the Nymeyer patent (GB1352742)

which was filed in 1971 from an earlier US application,
2
 entitled “Improvements

Relating to Data Processing” which in many ways was a precursor to the Signature

patent
3
 litigated in State Street.

4
 The Nymeyer specification outlined that the

invention related to the use of a computer to operate a market. Both Nymeyer and

Signature patents are essentially implementing business ideas via a computer system –

Nymeyer was setting up an auction system to allow individuals to buy and sell shares,

while Signature is similarly purchasing and selling shares but doing so by using a

networked system to combine the purchasing power of a partnership. Neither of these

patents utilise ‘novel’ computing techniques yet they both demonstrate different

approaches to describing the invention and to both can be applied the conclusion of

Whitford J – “Such an operation could in theory be done without the need for any

automatic aids but in practice needs to be automatically computed.”
5

Fig 1. Neyemer’s business method invention as hardware.

1
 Section 101(1) Patents Act 1949: "’invention’ means any manner of new manufacture the subject of

letters patent and grant of privilege within section six of the Statute of Monopolies and any new

method or process of testing applicable to the improvement or control of manufacture, and includes an

alleged invention”.

2
 See the US equivalent US 3,581,072 – “Auction Market Computation System” and note the change in

title for the UK office. Filed 1968.

3
 See US 5,193,056 “Data processing system for hub and spoke financial services

configuration.” A PCT application was filed to include Europe (WO9215953) but the

application was later deemed withdrawn without examination.

4
 State Street Bank & Trust Company v. Signature Financial Group, Inc., 149 F.3d 1368 (Fed. Cir.

1998).

5
 Application by IBM For The Revocation Of Letters Patent No. 1,352,742 In The Name Of Frederick

Nymeyer, Patents Appeal Tribunal , Monday, 16th October, 1978. The text of this judgment was added

as an appendix to a brief amicus curiae for Chevron Research Company in Sidney A. Diamond V.

Diehr and is available online.

(2007) 4:2 SCRIPT-ed

217

Nymeyer’s patent attorney was clearly melding together various integers to produce

what he hoped would be viewed as a single inventive entity. For example the ‘Price

Determine Gate’ (see Fig. 1) is described in circuit logic terms:

“The main data storage unit 18 is provided with an output circuit

that is connected to a price determining gate circuit 19 having three

outputs 21, 22, and 23. The output circuit of 21 of gate 19 is

connected to a subtractor circuit 24. …”

Such a description using terms like these would not have been usual amongst either

hardware designers or programmers of the 1970s: it was a descriptive picture drawn

up by the patent attorney to emphasise the machine-like qualities of the invention. In

effect, it was a composite structural image which – when actually programmed –

would have been entirely different in both software and hardware form, being run on

a general purpose computer and programmed in Fortran or Cobol or similar.

The court looked at the invention as a whole, and sought similarities with the

traditional ‘machine’. This is not to say that they were duped by the nature of the

invention – they clearly saw that the inventive element was a business scheme
6
 – but

6
 “We agree that it is plain that this patent derives from an idea Mr. Nymeyer conceived as to the best

way of determining a selling price for, for example, a stock or share …”

(2007) 4:2 SCRIPT-ed

218

that they were prepared to use the machine analogy to understand the invention – that,

when programmed – the general purpose computer becomes a special purpose

machine (an ‘apparatus’) – even if no special hardware is evident in the final system:

“As matters stand, however, until Mr. Nymeyer came along there

was no reason to suppose that anyone would have thought of

writing the appropriate programme and building it into a computer

or otherwise putting it into a physical form suitable for use with a

standard computer. A computer programmed to carry out Mr.

Nymeyer’s system must we think be considered as being an

apparatus having novel characteristics ...”

What are we to make of Nymeyer’s patent? Clearly it was a business scheme of the

order which has now become controversial within Europe. Yet the court did not view

this as problematic and had little problem in accepting that this was a ‘manner of new

manufacture’ and integrated it under the rubric of ‘machine’, following the manner of

seeing that if cam control of lathes is protectable then programs were simply the

computer equivalent. They did distinguish that this patent was not a mathematical

algorithm, which – if they had found to be the case – may have significantly altered

their outlook.

UK practice briefly changed with the introduction of the European Patent Convention

and the following of EPO practice. In 1984 Gert Kolle, a member of DG5, was

writing that:

“The chances of being granted a European [software] patent or a

national [software] patent in a Continental European country are

not good.”
7

Software related applications were thus routinely denied by examiners at the EPO

until the first such appeal (Vicom) reached Board 3.5.1 who radically suggested it

could be protectable due to the technical nature of a program on a machine:

“A basic difference between a mathematical method and a technical

process can be seen, however, in the fact that a mathematical

method or a mathematical algorithm is carried out on numbers

(whatever these numbers may represent) and provides a result also

in numerical form, the mathematical method or algorithm being

only an abstract concept prescribing how to operate on the

numbers. No direct technical result is produced by the method as

such. In contrast thereto, if a mathematical method is used in a

technical process, that process is carried out on a physical entity

(which may be a material object but equally an image stored as an

electric signal) by some technical means implementing the method

and provides as its result a certain change in that entity. The

technical means might include a computer comprising suitable

hardware or an appropriately programmed general purpose

computer.”

7
 Kolle G 1984 p. 61

(2007) 4:2 SCRIPT-ed

219

This reasoning that what is important is the overall technical effect of an invention has

set the underlying grounds for EPO computer-related applications and remains

European law. It is, though, hardly limpid in its clarity as many have complained.

Indeed when Van Den Berg – not a member of this Vicom board but a strong

supporter of this technical effect reasoning in the Boards of Appeal when be became

chair of 3.5.1 – attempted to explain
8
 the logic behind the technical means

framework, he provided the general framework of Vicom by suggesting:

“Generally speaking, an invention which would be patentable

according to conventional criteria should not be excluded from

protection merely because modern technical means in the form of a

computer program are used for its implementation.”
9

That is certainly a commendable objective but it is not clear why any protection still

had to be framed in the technical language of the prior technology. Van den Berg

appeared to miss the contradiction which had been noted by Banks:
10

“The board also pointed out, in addition to the reason already

given, that it would seem illogical to grant protection for a technical

process controlled by a suitably programmed computer but not for

the computer itself when set up to execute the control routine.”

To many it would seem illogical not to allow protection for the software itself when it

is set upon on a suitably programmed computer to carry out a technical process

controlled by a suitable programmed computer. It is a fiction to suppose that the

novelty lies in anything other than the software. Van Den Berg – who was to be

Chairman of the board which eventually broached this contradiction and effectively

acted as legislator for “pure” software patents – pointed out that the “boards of appeal

cannot assume the role of legislator. They have to apply the law as it stands and

cannot strive to meet wishes which are incompatible with the provisions of the

European Patent Convention.”
11

Why did board of appeal 3.5.1 take this step? Because it was obvious to them that the

software exclusion under the EPC was not practical. It was not practical because

software – by the 1980s – was becoming a major part of all areas of technology. And,

having what might be called an ‘engineering approach’ they felt that there was a

technical framework which would bypass the Art. 52 exclusion. This was that

programs which were part of/related to physical devices were not software ‘as such’:

they could in toto be viewed as machines. This is the solution of a practical

8
 Ironically in a text dedicated to the decisions of the Enlarged Board of Appeal.

9
 Van den Berg P., (1996) “Patentability of computer-software-related inventions”, in Members of the

Enlarged Board of Appeal of the EPO (Contributors) The Law and Practice of the Enlarged Board of

Appeal of the European Patent Office During Its First Ten Years, Carl Heymans Verlag., Munich. p. 33

10
 “Whether or not there can be said to be a real distinction between a program invention claimed in

this rather roundabout way and a claim to the program itself is at least open to doubt.” Banks M.A.L.,

(Chairman), 1970, The British patent system: report of the Committee to Examine the Patent System

and Patent Law, Stationery Office, London, Cmnd. 4407. Para. 474.

11 The Banks Committee Report on Reform of the Patent System, 1970, at p. 45.

(2007) 4:2 SCRIPT-ed

220

‘community’ rather than a legal concept; and this in part explains the difficulty courts

have had with it.

2. What is wrong with Vicom?

The Vicom decision was clearly an attempt to locate what was an algorithmic process

which was utilised in a program into a framework of protection which was not totally

suitable – the traditional model of ‘machine’. That is, it attempted to distinguish

between an abstract concept and technical signals (“technical contribution”). A

programmer – surely being the relevant person skilled in the art – would have

difficulty in agreeing with such a highly artificial distinction. The programmer would

not see the method as abstract at all – it could easily be implemented directly in a

programming language; and he would certainly not be concerned about electrical

signals – that would be handled by the input/output hardware. The core of the

invention to the programmer is the processing of the data structure by means of the

algorithm: there is nothing else in the invention of value.

This machine-oriented approach causes difficulties in examination. For example, the

Menashe patent (EP625760) shows how a patent attorney can persuade an examiner

that the invention is a ‘technical contribution’. The examiner had raised Art. 52(2) as

a problem during examination
12

 and the applicant’s attorney replied that by using the

EPO’s own problem and solution approach, the ‘objective problem’ could be stated

as:

“a) How to limit the amount of data transmitted between the

terminal and central computer in an interactive casino game, while

at the same time …

b) Providing fair and tamper-proof play of a casino game outside

the secure environs of a casino.

The objective problem so stated clearly does have the required

technical nature required by the EPC …”
13

The examiner appears to have been persuaded that this was indeed a ‘technical

contribution’ and the patent was granted, though someone more sceptical might read

the patent as a ‘business method patent’, which we have been assured by various

authorities is not permissible in Europe.

It was not to be until T97/0935 (an IBM application
14

) that the Board dropped the

fiction that a patentable invention was in the machine which was part hardware and

part software:

“It is self-evident that in this instance the basic idea underlying the

invention resides in the computer program. It is also clear that, in

such a case, the hardware on which the program is intended to run

12

 Examination report. 6 November 1997. Application 94303526.1

13
 Reply to examination report. 15 May 1998. Application 94303526.1

14
 This was granted as EP0457112. “Asynchronous resynchronization of a commit procedure”.

(2007) 4:2 SCRIPT-ed

221

is outside the invention, ie the hardware is not part of the invention.

It is the material object on which the physical changes carried out

by running the program take place.”
15

And suggested that a view that protection could not be given for the underlying

program was, the board held, illogical.
16

 The appeal was allowed, the application

sent back to the examination division and the guidelines were amended to incorporate

this new practice.
17

 A wider conception of ‘technical contribution’ was thus

developed but one which was still, to a very large extent, machine based (i.e. software

controlling a machine was protectable).

The new approach certainly removed one illogical factor, while trying to keep other

‘abstract’ inventions outwith protection – particularly ‘algorithms’ and ‘business

methods’. Unfortunately, allowing protection for software per se simply opens up

other illogical positions which the insightful patent attorney can attack to benefit his

client.

3. Ignoring Software

A programmer always works with a virtual environment – that is, a ‘world’ moulded

either by himself or by others. It is easiest to see this world as a model constructed in

the mind and transferred over to code. As Perlis suggested:

“Every computer program is a model, hatched in the mind, of a real

or mental process. These processes, arising from human experience

and thought, are huge in number, intricate in detail, and at any time

only partially understood. They are modelled to our permanent

satisfaction rarely by our computer programs.”
18

Such an insightful description will immediately strike a chord of recognition in the

programmer, but it is unlikely to do so in the mind of the lawyer. It says that to the

programmer working on the design of a data object or a procedure, the task is

tangible: the programmer views the objects he is dealing with as physical entities – we

see this most clearly in the use of diagrams by computer scientists when they explain

what they are trying to do. The programmer is building a machine with the same

mode of thinking as the eighteenth century millwright John Rennie placing iron cogs

and drive wheels in relationship to the power source at the Albion Mill
19

 : that is, as a

physical and tangible system – even though the actuality is non-physical and

intangible. Where Rennie was concerned with reducing friction and maximizing

power use the programmer – especially in the early days – was concerned with

reducing memory usage and maximizing throughput to the processor. The thinking

15

 Para 9.3

16
 Para 9.8

17
 Guidelines, Part C, Chapter IV, 2. Inventions.

18
 Foreword to Abelson H., Sussman G.J. & Sussman J., (1985) Structure and Interpretation of

Computer Programs, MIT Press.

19
 See Smiles S., (1861-62) Lives of the engineers, with an account of their principal works:

comprising also a history of inland communication in Britain, J. Murray, London.

(2007) 4:2 SCRIPT-ed

222

was the same, but the nature of the machine differed substantially – one tangible, one

virtual.

Despite the existence from an early date of this culture and expertise in programming,

when we look at patent applications and the process of examination the view which is

most usually missing is that of the programmer. It is as though the programmer’s

view of technology was considered irrelevant. This is true – it was not relevant. In the

attempt to fit the new computing technology into an appropriate and patentable

classification, his voice was ignored and the model which was used was that of the

classical ‘machine’. ‘Technical effect’ is essentially a dynamic concept which mirrors

the definition of ‘machine’ suggested by Reuleaux: “A machine is a combination of

solid bodies, so arranged as to compel the mechanical forces of nature to perform

work as a result of certain determinate movements”.
20

 The legal requirement in

European patentability has thus been looking for a change of physical state, which

usually accompanies work effected. This is not a programmer’s conception of the

machine: work is not the output of the new technology, but rather it is the processing

of information, a procedure which involves no Reuleaux-like work performance

except moving the contents of one data structure to another.

A program is complex not just because it contains many lines of code which have

been debugged, but because it contains so many different perspectives which

represent the different virtual elements of the design, the implementation and the use

of the program. This complexity gives rise to a whole host of possible inventive

ideas, some of which are certainly novel and some of which are of questionable

novelty arising more from the descriptive novelty (that is, the virtual model) perhaps

than any real, new advance as perceived by other programmers.

The histories of programming which are now beginning to appear validate the view

that real inventive advances can be found in software as such, rather than in some

amorphous ‘machine’ of the patent examiner. See, for example, Per Brinch Hansen’s

history of concurrent programming
21

 which emphasises invention at the conceptual

(that is virtual) level. And Hoare’s view that the CASE statement: “… was my first

programming language invention, of which I am still most proud, since it appears to

bear no trace of compensating disadvantage”.
22

The unfortunate narrative of the EPO is that since the 1950s a radical form of

technology had developed and despite the rhetoric of the patent system that its goal

was reward for new technological development, the system was only prepared to

accept this new technology on the basis of 19
th

 century notions of machine, not in the

new manner in which the programmer saw this new machine. Such legal fictions led

to contradictions at the heart of the patent examination system – to protect one artefact

by basing it upon the metaphor of a different artefact must lead to problems – which

are difficult to uphold and thus we had Vicom and the later decisions. These later

decisions too have contradictions at their core and we must wonder whether they can

20

 Reuleaux F., (1876) The Kinematics of Machinery, p. 35. Online at historical.library.cornell.edu.

21
 Hansen, P. B. (2002) “The invention of concurrent programming”, in Hansen P.B., (Ed.) the Origin

of Concurrent Programming: From Semaphores To Remote Procedure Calls, Springer-Verlag, New

York, New York, NY, pp. 3-61.

22
 C.A.R. Hoare, (1973) Hints On Programming Language Design, Stanford Artificial Intelligence

Laboratory Memo AIM-224. STAN-CS-73-403.

(2007) 4:2 SCRIPT-ed

223

continue to hold against the pressures desiring protection for the various kinds of

technologies based upon this new rampant model of virtual machine upon which has

developed a new technology.

4. Examining Software

In software the things we might call inventions are varied and wide ranging – perhaps

more than in any other technical field. This is in large part due to the way that we can

conceive programs: we view them as being different artefacts depending upon the

level of abstraction we are discussing at a particular point in time. Thus at the lowest

level, we might want protection for the way that we have carried out a particularly

slick implementation of our representational model. We might then look for

protection at a higher level of abstraction, in the way that – for example – we have

integrated the algorithm with the data structure. We can also at the highest level of

abstraction, try to gain protection for the idea as a whole – the replacement, say, of

performing monkeys with a system composed of a well-known machine and a novel

program.

There are dangers in allowing protections for the most abstract of descriptions – since,

at the most abstract what is potentially being protected is the problem itself rather than

a solution to the problem. This criticism has become quite pronounced in the US

where the Federal Court of Appeals has – various commentators have suggested
23

 –

removed the need in software patents to have any substantive enabling information at

all. One IBM attorney
24

 suggested that this approach has “attracted the patenting of

ideas which have been visualised as desirable but have no foundation in terms of the

research or development that may be required to enable their implementation.” If this

criticism is accepted, then it seems preferable that examination is carried out by those

who understand the underlying programming methodologies and suchlike rather than

those who simply look at the many abstract description provided.

But simply employing computer scientists and programmers to examine at the EPO –

thus “listening to the programmer” – will not overcome all problems since software

descriptions are different from those of, for example, chemical, engineering or

electrical patents. They differ in ways such as;

• First, the underlying programmed code is usually ignored;

• Second, the programmer is working with virtual models which may be

common (such as tables, stacks or trees) but which are in many areas likely to

have been self-constructed by the programmer, or the programming team, or

provided by other teams;

• Third, it is often the model from which the program is constructed which is at

the heart of the ‘inventive idea’;

23

 See for example Burk D.L. & Lemley M.A. (2003) “Policy Levers in Patent Law”, UC Berkeley

Public Law Research Paper No. 135; Minnesota Public Law Research Paper No. 03-11. “The Federal

Circuit has essentially excused software inventions from compliance with the enablement and best

mode requirements, but in a manner that raises serious questions about how stringently it will read the

nonobviousness requirements”

24
 Flynn J.D., (2001) “Comments on the International Effort to Harmonize the Substantive

Requirements of Patent Laws” IBM submission at

www.uspto.gov/web/offices/dcom/olia/harmonization/TAB42.pdf.

(2007) 4:2 SCRIPT-ed

224

• Fourth, describing the model is usually done with diagrammatic techniques

which are further abstractions of that model.

The effect of these points is that an invention can reside to a very large extent in, say,

diagrammatic representations of the model which differ according to the level of

abstraction. To the lawyer, this notion of a similar concept differing at the various

levels of abstraction may be difficult to comprehend – after all, the aim of good and

clear legal thinking is to pin down concepts so far as possible. Programmers, however,

do not take that view: the idea is not to fix any concept in concrete, but to view it as

malleable since this is where the power of programming arises.

The malleability of software is of huge benefit to the patent attorney – the invention

can be relatively easily recast in any desired form to fit in with the formal needs of the

examiner. This explains Beresford’s encouragement to patent attorneys to think

creatively about how they construct their software related applications:

“[with] applications for computer systems for the performance of

business methods, therefore, it is essential to give careful and

imaginative attention to the question of whether or not it is possible

to identify some aspect of the system which can be said to provide a

technical effect.”
25

The examiners then find themselves in the unwelcome position of:

• having a technology described using the model of a different technology;

• having poor access to prior art (a commonly agreed problem);

• unable to discover whether the invention actually works; and

• not quite sure what he is examining – as noted by Moor
26

 when he

pointed to three ways to describe a software artefact: theory, model and

code.

In this kind of environment where examiners are being urged to speed up examination

and “[I]t is more difficult to reject a patent application than to grant a patent”
27

 the

suspicion must be that patents are being granted to inventions which are undeserving.

5. Where To Now?

The EC felt there are strong policy reasons for protecting software – e.g. that the more

intellectual property protection was introduced the better it was for the economic

development of the EC. Such pro-protection perspectives had been found in the

25

 Beresford K., (2000) Patenting Software under the European Patent Convention, Sweet and

Maxwell, London, p. 183. Emphasis added.

26
 Moor J.H., (1978) “Three Myths of Computer Science”, British Journal for the Philosophy of

Science, Vol. 29, No. 3, pp. 213-222.

27
 From an interview with Prof. Erich Hausser (then President of the German Patent Office). See Leith

P., Harmonisation of Intellectual Property in Europe: a case study in patent procedure, Vol. 3,

Perspectives on Intellectual Property, Sweet & Maxwell, London, 1998, p. 143.

(2007) 4:2 SCRIPT-ed

225

Bangemann Report
28

 which led to the introduction of the Information Society

Programme in the 1990s. However, given the recent bruising from software

opponents it is unlikely that the Commission will act further. This does not mean that

software will not be protected throughout Europe, simply that in order to be protected

the applications must be reconstituted in the requisite (‘device style’) manner. Some

software patent opponents have welcomed the result of the European Parliament’s

vote, but it does not appear to me to be a particularly effective victory because clearly

a flawed system with weak examination continues: the software patenting which

existed before the Parliament’s vote simply continues afterwards.

Some feel that other kinds of protection would be useful and more directed towards

the special nature of software, for example, giving protection for a lesser period or

providing protection more appropriate to SMEs. These frequently mirror the utility

model and while, in some ways, they do make sense it is unlikely that they will

encourage current patent applicants to give up seeking patent protection: more likely

is that such utility models will be used to more effectively (and more cheaply) build a

patent thicket around the more expensive patents.

The approach from computer science has not helped. Like most technologists they

have preferred to stay clear of lawyers, viewing them as more problem than solution.

Thus the underlying assumption of the discipline has been similar to that of Garfinkel

et. al. and their belief that “patents are bad for software”.
29

 That is certainly one

view, but it is not the only view. It could equally be the case that what the field of

computing needs at present is a patent system to force upon it some measure of

discipline. For example, there is a haphazard use of terminology in the field; there are

also – to this author’s eyes
30

 – frequent instances where the wheel is being reinvented

over and over again; and peer review of claimed advances is almost totally missing.

A patent system which examined software on software’s own terms may well be the

mechanism which forces an improvement in the culture of computer science. The

court and legal system will make claims to producing the ‘truth’ – certainly a conceit

– but the courtroom does have the ability to force the participants to consider their

assumptions. Technologies such as physics and chemistry have developed within a

patent framework and it has done them – in the long term – no harm at all. They have

means of clear communication, a developed sense of what constitutes a technical

advance, and a robust attitude to testing claims of novelty. The patent system has not

been entirely responsible for these developments, but it does not appear to have

prevented a positive environment developing.

Board of appeal 3.5.1 is in the strongest position to improve what is – to most critics

of the system – a confused and ill-constructed way to examine software given that

despite the support of senior European judiciary for the European Patent Court,
31

 the

28

 Recommendations to the European Council: Europe and the global information society, Brussels, 26

May 1994.

29
 Garfinkel S.L., Stallman R.M., & Kapor M., (1991) “Why Patents are Bad for Software”, Issues in

Science and Technology, Fall, pp. 50-55.

30
 Leith P., (1990) Formalism in AI and Computer Science, Ellis Horwood/Simon and Schuster,

London.

31
www.eplaw.org/Downloads/Second%20Venice%20Resolution%20dated%204%20November%2020

06.pdf

(2007) 4:2 SCRIPT-ed

226

European Patent Litigation Agreement
32

 is dead
33

 and the Enlarged Board of Appeal

is unlikely at this late date to tinker with notions of ‘technical contribution’.
34

6. Conclusion

The research project which underpins my argument was, in the simplest terms, to

browse through the published patent documentation and try to determine the kinds of

tactics being employed to gain protection and whether there were methods of more

properly defining what should be allowable than recourse to the concept of ‘technical

contribution’. As I browsed and my recall of computing and its loci of interest grew, I

found more and more that I could not really see in the documentation the

inventiveness which I knew could be found in computing – there was plenty of

software invention but always hidden away in a manner which undermined that

inventiveness rather than affirmed it. My thinking about software patents changed

and the conclusions I drew became more positive, though with some reservations.

These reservations are primarily of a technical nature: how do we examine software in

a manner which will give protection for valid inventions (that is, those we presume to

have a sufficient inventive step) and how do we find methods to bar those of the type

which have brought software protection into disrepute. It seems unlikely that we can

do this unless we think more clearly about the object of protection itself.

This is not to say that my own view is that software patents are either essential or ‘bad

for software’ – the evidence is too weak to support either contention – but we are in a

situation where software protection exists, will not easily go away, and thus needs to

be dealt with as a currently existing yet damaged system.

32

 European Patent Organisation Working Party on Litigation (2005) Draft Agreement on the

establishment of a European patent litigation system at http://www.european-patent-

office.org/epo/epla/pdf/ewl0510.pdf

33
 Buck T., (2006), “Hopes fade for EU patents reform initiative”, Financial Times, December 6. “…

the plan on Monday failed to secure backing from national governments, after several ministers called

for the EU to pursue its own patent litigation regime. Mr McCreevy said the latest setback had made

him ‘pessimistic’ of making any meaningful progress on an issue seen by business leaders as crucial

for the future of European companies. ‘Anything remotely concerning this patent area is fraught with

minefields at every turn of the road,’ he said.”

34
 The Enlarged Board has consistently refused to see itself as a upper level of appeal. Leith P., (2001)

“Judicial and Administrative Roles: the patent appellate system in a European Context”, Intellectual

Property Quarterly, Vol. 1, 50-99.

